کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
387492 660902 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Data-driven fuzzy clustering based on maximum entropy principle and PSO
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Data-driven fuzzy clustering based on maximum entropy principle and PSO
چکیده انگلیسی

To identify the optimum fuzzy rule base is the major difficulty in designing fuzzy model. To design optimum fuzzy rule base, which is traditionally achieved by tedious trial and error process, from numerical data, a novel data-driven fuzzy clustering method based on maximum entropy principle (MEP) and particle swarm optimization (PSO) is proposed. In this algorithm, the memberships of output variables are inferred by maximum entropy principle, and the centers of fuzzy rule base are optimized by PSO. Comparing with the method that designing fuzzy rule base only by PSO or other evolutionary computation methods, the number of parameters to be optimized decreased greatly, and the computation cost declined. To check the effectiveness of the suggested approach, three examples for modeling are examined comparing with the method only using PSO. The performance of the identified fuzzy models is demonstrated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 1, January 2009, Pages 625–633
نویسندگان
, ,