کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
387499 660902 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Imbalanced text classification: A term weighting approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Imbalanced text classification: A term weighting approach
چکیده انگلیسی

The natural distribution of textual data used in text classification is often imbalanced. Categories with fewer examples are under-represented and their classifiers often perform far below satisfactory. We tackle this problem using a simple probability based term weighting scheme to better distinguish documents in minor categories. This new scheme directly utilizes two critical information ratios, i.e. relevance indicators. Such relevance indicators are nicely supported by probability estimates which embody the category membership. Our experimental study using both Support Vector Machines and Naïve Bayes classifiers and extensive comparison with other classic weighting schemes over two benchmarking data sets, including Reuters-21578, shows significant improvement for minor categories, while the performance for major categories are not jeopardized. Our approach has suggested a simple and effective solution to boost the performance of text classification over skewed data sets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 1, January 2009, Pages 690–701
نویسندگان
, , ,