کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
387709 660906 2012 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Map segmentation for geospatial data mining through generalized higher-order Voronoi diagrams with sequential scan algorithms
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Map segmentation for geospatial data mining through generalized higher-order Voronoi diagrams with sequential scan algorithms
چکیده انگلیسی

Segmentation is one popular method for geospatial data mining. We propose efficient and effective sequential-scan algorithms for higher-order Voronoi diagram districting. We extend the distance transform algorithm to include complex primitives (point, line, and area), Minkowski metrics, different weights and obstacles for higher-order Voronoi diagrams. The algorithm implementation is explained along with efficiencies and error. Finally, a case study based on trade area modeling is described to demonstrate the advantages of our proposed algorithms.


► Propose a flexible sequential-scan based algorithm for higher-order Voronoi diagrams.
► The algorithm covers order-k Voronoi diagrams, ordered order-k Voronoi diagrams, and kth nearest Voronoi diagrams.
► The higher-order Voronoi algorithm works with other generalized settings such as weights, in the presence of obstacles, and complex data types.
► The algorithm is computationally efficient in O(F) time where F is the number of pixels.
► The algorithm is flexible and effective to be used with various environmental settings.
► Applications of the algorithm discovering geographic knowledge through web map segmentation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 39, Issue 12, 15 September 2012, Pages 11135–11148
نویسندگان
, , ,