کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
387842 660911 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mining globally interesting patterns from multiple databases using kernel estimation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Mining globally interesting patterns from multiple databases using kernel estimation
چکیده انگلیسی

When extracting knowledge (or patterns) from multiple databases, the data from different databases might be too large in volume to be merged into one database for centralized mining on one computer, the local information sources might be hidden from a global decision maker due to privacy concerns, and different local databases may have different contribution to the global pattern. Dealing with multiple databases is essentially different from mining from a single database. In multi-database mining, the global patterns must be obtained by carefully analyzing the local patterns from individual databases. In this paper, we propose a nonlinear method, named KEMGP (kernel estimation for mining global patterns), to tackle this problem, which adopts kernel estimation to synthesizing local patterns for global patterns. We also adopt a method to divide all the data in different databases according to attribute dimensionality, which reduces the total space complexity. We test our algorithm on a customer management system, where the application is to obtain all globally interesting patterns by analyzing the individual databases. The experimental results show that our method is efficient.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 8, October 2009, Pages 10863–10869
نویسندگان
, , , ,