کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
387913 660913 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Neighborhood classifiers
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Neighborhood classifiers
چکیده انگلیسی

K nearest neighbor classifier (K-NN) is widely discussed and applied in pattern recognition and machine learning, however, as a similar lazy classifier using local information for recognizing a new test, neighborhood classifier, few literatures are reported on. In this paper, we introduce neighborhood rough set model as a uniform framework to understand and implement neighborhood classifiers. This algorithm integrates attribute reduction technique with classification learning. We study the influence of the three norms on attribute reduction and classification, and compare neighborhood classifier with KNN, CART and SVM. The experimental results show that neighborhood-based feature selection algorithm is able to delete most of the redundant and irrelevant features. The classification accuracies based on neighborhood classifier is superior to K-NN, CART in original feature spaces and reduced feature subspaces, and a little weaker than SVM.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 34, Issue 2, February 2008, Pages 866–876
نویسندگان
, , ,