کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
388027 | 660915 | 2009 | 9 صفحه PDF | دانلود رایگان |

This paper presents a computational method of forecasting based on high-order fuzzy time series. The developed computational method provides a better approach to overcome the drawback of existing high-order fuzzy time series models. Its simplicity lies with the use of differences in consecutive values of various orders as forecasting parameter and a w-step fuzzy predictor in place of complicated computations of fuzzy logical relations. The objective of the present study is to examine the suitability of various high-order fuzzy time series models in forecasting. The general suitability of the developed method has been tested by implementing it in the forecasting of student enrollments of the University of Alabama and in the forecasting of crop (Lahi) production, a case of high uncertainty in time series data. The results obtained have been compared in terms of average error of forecast to show superiority of the proposed model.
Journal: Expert Systems with Applications - Volume 36, Issue 7, September 2009, Pages 10551–10559