کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
388052 | 660915 | 2009 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Interactive mining of top-K frequent closed itemsets from data streams
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Mining closed frequent itemsets from data streams is of interest recently. However, it is not easy for users to determine a proper minimum support threshold. Hence, it is more reasonable to ask users to set a bound on the result size. Therefore, an interactive single-pass algorithm, called TKC-DS (top-K frequent closed itemsets of data streams), is proposed for mining top-K closed itemsets from data streams efficiently. A novel data structure, called CIL (closed itemset lattice), is developed for maintaining the essential information of closed itemsets generated so far. Experimental results show that the proposed TKC-DS algorithm is an efficient method for mining top-K frequent itemsets from data streams.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 7, September 2009, Pages 10779–10788
Journal: Expert Systems with Applications - Volume 36, Issue 7, September 2009, Pages 10779–10788
نویسندگان
Hua-Fu Li,