کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388052 660915 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Interactive mining of top-K frequent closed itemsets from data streams
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Interactive mining of top-K frequent closed itemsets from data streams
چکیده انگلیسی

Mining closed frequent itemsets from data streams is of interest recently. However, it is not easy for users to determine a proper minimum support threshold. Hence, it is more reasonable to ask users to set a bound on the result size. Therefore, an interactive single-pass algorithm, called TKC-DS (top-K frequent closed itemsets of data streams), is proposed for mining top-K closed itemsets from data streams efficiently. A novel data structure, called CIL (closed itemset lattice), is developed for maintaining the essential information of closed itemsets generated so far. Experimental results show that the proposed TKC-DS algorithm is an efficient method for mining top-K frequent itemsets from data streams.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 7, September 2009, Pages 10779–10788
نویسندگان
,