کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388173 660920 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
POP algorithm: Kernel-based imputation to treat missing values in knowledge discovery from databases
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
POP algorithm: Kernel-based imputation to treat missing values in knowledge discovery from databases
چکیده انگلیسی

To complete missing values a solution is to use correlations between the attributes of the data. The problem is that it is difficult to identify relations within data containing missing values. Accordingly, we develop a kernel-based missing data imputation in this paper. This approach aims at making an optimal inference on statistical parameters: mean, distribution function and quantile after missing data are imputed. And we refer this approach to parameter optimization method (POP algorithm). We experimentally evaluate our approach, and demonstrate that our POP algorithm (random regression imputation) is much better than deterministic regression imputation in efficiency and generating an inference on the above parameters.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 2, Part 2, March 2009, Pages 2794–2804
نویسندگان
, , , , ,