کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388213 660920 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An efficient document classification model using an improved back propagation neural network and singular value decomposition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
An efficient document classification model using an improved back propagation neural network and singular value decomposition
چکیده انگلیسی

This paper proposed a new improved method for back propagation neural network, and used an efficient method to reduce the dimension and improve the performance. The traditional back propagation neural network (BPNN) has the drawbacks of slow learning and is easy to trap into a local minimum, and it will lead to a poor performance and efficiency. In this paper, we propose the learning phase evaluation back propagation neural network (LPEBP) to improve the traditional BPNN. We adopt a singular value decomposition (SVD) technique to reduce the dimension and construct the latent semantics between terms. Experimental results show that the LPEBP is much faster than the traditional BPNN. It also enhances the performance of the traditional BPNN. The SVD technique cannot only greatly reduce the high dimensionality but also enhance the performance. So SVD is to further improve the document classification systems precisely and efficiently.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 2, Part 2, March 2009, Pages 3208–3215
نویسندگان
, ,