کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388236 660920 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using an artificial neural network prediction model to optimize work-in-process inventory level for wafer fabrication
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Using an artificial neural network prediction model to optimize work-in-process inventory level for wafer fabrication
چکیده انگلیسی

A proper selection of a work-in-process (WIP) inventory level has great impact onto the productivity of wafer fabrication processes, which can be properly used to trigger the decision of when to release specific wafer lots. However, the selection of an optimal WIP is always a tradeoff amongst the throughput rate, the cycle time and the standard deviation of the cycle time. This study focused on finding an optimal WIP value of wafer fabrication processes by developing an algorithm integrating an artificial neural network (ANN) and the sequential quadratic programming (SQP) method. With this approach, it offered an effective and systematic way to identify an optimal WIP level. Hence, the efficiency of finding the optimal WIP level was greatly improved.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 2, Part 2, March 2009, Pages 3421–3427
نویسندگان
, , ,