کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388308 660921 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Indirect adaptive self-organizing RBF neural controller design with a dynamical training approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Indirect adaptive self-organizing RBF neural controller design with a dynamical training approach
چکیده انگلیسی

This study proposes an indirect adaptive self-organizing RBF neural control (IASRNC) system which is composed of a feedback controller, a neural identifier and a smooth compensator. The neural identifier which contains a self-organizing RBF (SORBF) network with structure and parameter learning is designed to online estimate a system dynamics using the gradient descent method. The SORBF network can add new hidden neurons and prune insignificant hidden neurons online. The smooth compensator is designed to dispel the effect of minimum approximation error introduced by the neural identifier in the Lyapunov stability theorem. In general, how to determine the learning rate of parameter adaptation laws usually requires some trial-and-error tuning procedures. This paper proposes a dynamical learning rate approach based on a discrete-type Lyapunov function to speed up the convergence of tracking error. Finally, the proposed IASRNC system is applied to control two chaotic systems. Simulation results verify that the proposed IASRNC scheme can achieve a favorable tracking performance.


► The self-organizing RBF network can add and prune hidden neurons online.
► The self-organizing RBF network can achieve better learning accuracy than others.
► The proposed control scheme can effectively control two chaotic systems.
► The dynamical learning rate can speed up the convergence of the tracking error.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 39, Issue 1, January 2012, Pages 564–573
نویسندگان
, , ,