کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388503 660926 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evaluating the difference between graph structures in Gaussian Bayesian networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Evaluating the difference between graph structures in Gaussian Bayesian networks
چکیده انگلیسی

In this work, we evaluate the sensitivity of Gaussian Bayesian networks to perturbations or uncertainties in the regression coefficients of the network arcs and the conditional distributions of the variables. The Kullback–Leibler divergence measure is used to compare the original network to its perturbation. By setting the regression coefficients to zero or non-zero values, the proposed method can remove or add arcs, making it possible to compare different network structures. The methodology is implemented with some case studies.


► A new methodology to deal with perturbations in the conditional specification of Gaussian Bayesian networks is proposed.
► We can remove or add arcs, making it possible to compare different network structures.
► Some practical examples and a case study in metrology demonstrate the feasibility of the procedure.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 38, Issue 10, 15 September 2011, Pages 12409–12414
نویسندگان
, , , ,