کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388515 660926 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Support Vector Machine incorporated with feature discrimination
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Support Vector Machine incorporated with feature discrimination
چکیده انگلیسی

Support Vector Machine (SVM) achieves state-of-the-art performance in many real applications. A guarantee of its performance superiority is from the maximization of between-class margin, or loosely speaking, full use of discriminative information from between-class samples. While in this paper, we focus on not only such discriminative information from samples but also discrimination of individual features and develop feature discrimination incorporated SVM (FDSVM). Instead of minimizing the l2-norm of feature weight vector, or equivalently, imposing equal penalization on all weight components in SVM learning, FDSVM penalizes each weight by an amount decreasing with the corresponding feature discrimination measure, consequently features with better discrimination can be attached greater importance. Experiments on both toy and real UCI datasets demonstrate that FDSVM often achieves better performance with comparable efficiency.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 38, Issue 10, 15 September 2011, Pages 12506–12513
نویسندگان
, , ,