کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388532 660926 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
IIR system identification using cat swarm optimization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
IIR system identification using cat swarm optimization
چکیده انگلیسی

Conventional derivative based learning rule poses stability problem when used in adaptive identification of infinite impulse response (IIR) systems. In addition the performance of these methods substantially deteriorates when reduced order adaptive models are used for such identification. In this paper the IIR system identification task is formulated as an optimization problem and a recently introduced cat swarm optimization (CSO) is used to develop a new population based learning rule for the model. Both actual and reduced order identification of few benchmarked IIR plants is carried out through simulation study. The results demonstrate superior identification performance of the new method compared to that achieved by genetic algorithm (GA) and particle swarm optimization (PSO) based identification.


► Cat swarm optimization based approach for IIR system identification.
► Cat swarm optimization is more efficient than GA and PSO.
► This algorithm is tested on standard IIR plants.
► Sensitivity analysis of different parameters on the performance of CSO algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 38, Issue 10, 15 September 2011, Pages 12671–12683
نویسندگان
, , ,