کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388796 660941 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An automotive generator fault diagnosis system using discrete wavelet transform and artificial neural network
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
An automotive generator fault diagnosis system using discrete wavelet transform and artificial neural network
چکیده انگلیسی

This paper describes a fault diagnosis system for automotive generators using discrete wavelet transform (DWT) and an artificial neural network. Conventional fault indications of automotive generators generally use an indicator to inform the driver when the charging system is malfunction. But this charge indicator tells only if the generator is normal or in a fault condition. In the present study, an automotive generator fault diagnosis system is developed and proposed for fault classification of different fault conditions. The proposed system consists of feature extraction using discrete wavelet analysis to reduce complexity of the feature vectors together with classification using the artificial neural network technique. In the output signal classification, both the back-propagation neural network (BPNN) and generalized regression neural network (GRNN) are used to classify and compare the synthetic fault types in an experimental engine platform. The experimental results indicate that the proposed fault diagnosis is effective and can be used for automotive generators of various engine operating conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 6, August 2009, Pages 9776–9783
نویسندگان
, ,