کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388799 660941 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unsupervised speaker segmentation with residual phase and MFCC features
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Unsupervised speaker segmentation with residual phase and MFCC features
چکیده انگلیسی

This paper proposes an unsupervised method for improving the automatic speaker segmentation performance by combining the evidence from residual phase (RP) and mel frequency cepstral coefficients (MFCC). This method demonstrates the complementary nature of speaker specific information present in the residual phase in comparison with the information present in the conventional MFCC. Moreover this method presents an unsupervised speaker segmentation algorithm based on support vector machine (SVM). The experiments show that the combination of residual phase and MFCC helps to identify more robustly the transitions among speakers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 6, August 2009, Pages 9799–9804
نویسندگان
, , ,