کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388834 660941 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Predicting business failure using multiple case-based reasoning combined with support vector machine
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Predicting business failure using multiple case-based reasoning combined with support vector machine
چکیده انگلیسی

Financial distress prediction of business institutions is a long cherished topic concentrating on reducing loss of the society. Case-based reasoning (CBR) is an easily understandable methodology for problem solving. Support vector machine (SVM) is a new technology developed recently with high classification performance. Combining-classifiers system is capable of taking advantages of various single techniques to produce high performance. In this research, we develop a new combining-classifiers system for financial distress prediction, where four independent CBR systems with k-nearest neighbor (KNN) algorithms are employed as classifiers to be combined, and SVM is utilized as the algorithm fulfilling combining-classifiers. The new combining-classifiers system is named as Multiple CBR systems by SVM (Multi-CBR–SVM). The four CBR systems, respectively, are found on similarity measure on the basis of Euclidean distance metric, Manhattan distance metric, Grey coefficient metric, and Outranking relation metric. Outputs of independent CBRs are transferred as inputs of SVM to carry out combination. How to implement the combining-classifiers system with collected data is illustrated in detail. In the experiment, 83 pairs of sample companies in health and distress from Shanghai and Shenzhen Stock Exchange were collected, the technique of grid-search was utilized to get optimal parameters, leave-one-out cross-validation (LOO-CV) was used as assessment in parameter optimization, and predictive performances on 30-times hold-out data were used to make comparisons among Multi-CBR–SVM, its components and statistical models. Empirical results have indicated that Multi-CBR–SVM is feasible and validated for listed companies’ business failure prediction in China.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 6, August 2009, Pages 10085–10096
نویسندگان
, ,