کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388886 660946 2008 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Increasing classification efficiency with multiple mirror classifiers
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Increasing classification efficiency with multiple mirror classifiers
چکیده انگلیسی

Reducing the computational load for training and classification procedures is a major problem in many pattern recognition approaches, such as artificial neural networks and support vector machines. Combining the multiple mirror classifiers is proven to be an efficient way to reduce the classification time. In this paper, we propose an approach that uses cooperative clustering method to construct mirror classifiers. With this procedure, the set of mirror point pairs with pre-determined size near the boundary of two classes is determined. Each mirror point pair constructs a small classifier. The minimum squared error based method and support vector machine based method are proposed to determine the weights for combining the multiple mirror classifiers. Experiments show that the training efficiency and classification efficiency are improved with a slight impact on generalization performance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 35, Issue 4, November 2008, Pages 1883–1888
نویسندگان
, , ,