کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
397847 1438430 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Deep kernel dimensionality reduction for scalable data integration
ترجمه فارسی عنوان
کاهش حجم عمیق هسته برای یکپارچه سازی داده های مقیاس پذیر
کلمات کلیدی
کاهش ابعاد، یکپارچه سازی داده های ناهمگن
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Dimensionality reduction is used to preserve significant properties of data in a low-dimensional space. In particular, data representation in a lower dimension is needed in applications, where information comes from multiple high dimensional sources. Data integration, however, is a challenge in itself.In this contribution, we consider a general framework to perform dimensionality reduction taking into account that data are heterogeneous. We propose a novel approach, called Deep Kernel Dimensionality Reduction which is designed for learning layers of new compact data representations simultaneously. The method can be also used to learn shared representations between modalities. We show by experiments on standard and on real large-scale biomedical data sets that the proposed method embeds data in a new compact meaningful representation, and leads to a lower classification error compared to the state-of-the-art methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 74, July 2016, Pages 121–132
نویسندگان
, , ,