کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
398323 1438738 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search
ترجمه فارسی عنوان
پیش بینی بار کوتاه مدت با استفاده از یک مدل ترکیبی با یک سری زمانی فاز تصحیح شده فاکتور زمانی و با توجه به بهبود هماهنگی
کلمات کلیدی
سری زمانی فازی محاسبه شده به صورت معکوس، جستجو هارمونی، پیش بینی بار کوتاه مدت، عملکرد همبستگی خودکار
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• A three Phases hybrid method was introduced for Short Term Load Forecasting.
• The first Phase discusses the primitives for initialization and inputting.
• The second Phase is linked with the Improved Harmony Search procedure.
• The third Phase is concerned with a typical fuzzy time series algorithm.
• The results have shown that proposed method was suppressed its counterparts.

This article discusses the proposal of an enhanced hybrid algorithm. The algorithm focuses on a sophisticated exponentially weighted fuzzy algorithm that is aligned with an enhanced harmony search. Short-term load forecasting can be performed appropriately with this specific method. The initial phase of this research discusses the recognition of the fuzzy logical relationship order with the aim of autocorrelation analysis. The second phase aims at obtaining the optimal intervals and coefficients for adoption using training data set. The last phase seeks to apply the obtained information and attempts to predict a 48-step-ahead on Short term load forecasting (STLF) problems. It is essential to validate this process. To achieve this goal, eight case studies of actual load data from France and Britain (from 2005) were employed. These data were applied to both the developed algorithm and certain improved STLF predicting models. The subsequent errors from these models were compared. The results of the error analysis exhibit the advantages of the developed algorithm with respect to its prediction preciseness.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Electrical Power & Energy Systems - Volume 62, November 2014, Pages 118–129
نویسندگان
, , , ,