کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
398397 1438738 2014 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection
ترجمه فارسی عنوان
یک روش پیش بینی بار کوتاه مدت کوتاه بر اساس الگوریتم عصبی - تکاملی و انتخاب ویژگی های هرج و مرج
کلمات کلیدی
پیش بینی بار کوتاه مدت، شبکه عصبی، سری زمانی پر هرج و مرج انتخاب ویژگی، فاز بازسازی شده، تکامل تکاملی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• A new hybrid neuro-evolutionary algorithm method is proposed for short-term load forecasting.
• Neural network’s weights and biases are best tuned by using Differential Evolutionary (DE) algorithm.
• A new chaotic feature selection is proposed for designing input vector.
• Phase space reconstruction under Taken’s embedding theorem is used in preparing candidate features.

In competitive environment of deregulated electricity market, short-term load forecasting (STLF) is a major discussion for efficient operation of power systems. Therefore, the area of electricity load forecasting is still essential need for more accurate and stable load forecast algorithm. However, the electricity load is a non-linear signal with high degree of volatility. In this paper, a new forecasted method based on neural network (NN) and chaotic intelligent feature selection is presented. The proposed feature selection method selects the best set of candidate input which is used as input data for the forecasted. The theory of phase space reconstruction under Taken’s embedding theorem is used to prepare candidate features. Then, candidate inputs relevance to target value are measured by using correlation analysis. Forecast engine is a multilayer perception layer (MLP) NN with hybrid Levenberg–Marquardt (LM) and Differential Evolutionary (DE) learning algorithm. The proposed STLF is tested on PJM and New England electricity markets and compared with some of recent STLF techniques.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Electrical Power & Energy Systems - Volume 62, November 2014, Pages 862–867
نویسندگان
, , ,