کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
399074 1438789 2009 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Erroneous measurement detection in substation automation system using OLS based RBF neural network
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Erroneous measurement detection in substation automation system using OLS based RBF neural network
چکیده انگلیسی

With the development of communication and information technology over the past decades, Electronic Instrumental Transducer (EIT) and broadband communication network have been prevalent within Substation Automation System (SAS) and power utilities. Since mal-function of EIT and broadband communication network within SAS can produce dangerous erroneous measurements, the risk for the protection system to receive these erroneous measurements and thereafter to mis-operate increase. Pattern identification can be utilized to detect erroneous measurements. In order to achieve satisfying pattern identification precision within time limit imposed by protection systems, Radial Basis Function Neural Network (RBFNN) are investigated in the paper. Orthogonal Least Square (OLS) learning algorithm is used to prune network scale in order to mitigate contradictory requirements of high precision and low time delay. Simulation results show OLS based RBFNN can achieve satisfying performance within limited time.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Electrical Power & Energy Systems - Volume 31, Issues 7–8, September 2009, Pages 351–355
نویسندگان
, , , ,