کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
399324 1438723 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel chaotic teaching–learning-based optimization algorithm for multi-machine power system stabilizers design problem
ترجمه فارسی عنوان
الگوریتم بهینه سازی یادگیری مبتنی بر یادگیری برای سیستم تثبیت کننده های قدرت چندگانه ماشین مجازی
کلمات کلیدی
یادگیری آموزش تعاملی، پایداری پویا، نوسانات فرکانس پایین، تثبیت کننده سیستم قدرت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• A novel algorithm for tuning power system stabilizers (PSS) is developed.
• The performance of the chaotic teaching learning algorithm (CTLA) was investigated by using a set of benchmark functions.
• The problem design is formulated as an optimization problem.
• The CTLA is employed to search for optimal PSS parameters.
• Simulations results demonstrated the effectiveness of the proposed algorithm in power systems.

This paper proposes an efficient optimization algorithm named chaotic teaching–learning algorithm (CTLA), to solve multimachine power system stabilizers design problem. The original teaching learning algorithm as competitive to other optimization algorithms, used two phases to proceed to the global optimal solution: ‘teacher phase’ and ‘learner phase’. However, during the second phase an adequate interaction between the teacher and the learners in entire search space are not guaranteed and the algorithm may be trapped in local optima. Thus, in the proposed CTLA a new phase named “chaotic phase” is added in order to overcome this drawback. The performance of the CTLA is investigated by using a set of benchmark functions. To demonstrate the effectiveness of the proposed algorithm in power systems, the conventional lead-lag power system stabilizers (PSSs) are tuned for: three machines nine bus system (WSCC) and the ten machine thirty-nine bus New England power systems. The performance of the proposed CTLA-based PSS (CTLAPSSs) under different loading conditions and disturbances is investigated through eigen-value analysis, non-linear time domain-simulations and some performance indices.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Electrical Power & Energy Systems - Volume 77, May 2016, Pages 197–209
نویسندگان
, , , ,