کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
399364 1438724 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An online power system static security assessment module using multi-layer perceptron and radial basis function network
ترجمه فارسی عنوان
ماژول ارزیابی امنیت سیستم استاتیک آنلاین با استفاده از چندپردازنده پروپترون و شبکه رادیال تابع پایه
کلمات کلیدی
شبکه های عصبی مصنوعی، امنیت سیستم قدرت، ماژول رتبه بندی احتمالی ارزیابی امنیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Power system static security assessment module is proposed for contingency ranking.
• MFNN and RBFN models are trained and tested to predict performance indices.
• The PSSSA module with MFNN and RBFN is quick and accurate for security assessment.

Efficient contingency screening and ranking method has gained importance in modern power systems for its secure operation. This paper proposes two artificial neural networks namely multi-layer feed forward neural network (MFNN) and radial basis function network (RBFN) to realize the online power system static security assessment (PSSSA) module. To assess the severity of the system, two indices have been used, namely active power performance index and voltage performance index, which are computed using Newton–Raphson load flow (NRLF) analysis for variable loading conditions under N − 1 line outage contingencies. The proposed MFNN and RBFN models based PSSSA module, are fed with power system operating states, load conditions and N − 1 line outage contingencies as input features to train the neural network models, to predict the performance indices for unseen network conditions and rank them in descending order based on performance indices for security assessment. The proposed approaches are tested on standard IEEE 30-bus test system, where the simulation results prove its performance and robustness for power system static security assessment. The comparison of severity obtained by the neural network models and the NRLF analysis in terms of time and accuracy, signifies that the proposed model is quick, accurate and robust for power system static security evaluation for unseen network conditions. Thus, the proposed PSSSA module implemented using MFNN and RBFN models are found to be feasible for online implementation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Electrical Power & Energy Systems - Volume 76, March 2016, Pages 165–173
نویسندگان
, ,