کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
402249 676885 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Joint model for feature selection and parameter optimization coupled with classifier ensemble in chemical mention recognition
ترجمه فارسی عنوان
مدل مشترک برای انتخاب ویژگی و بهینه سازی پارامتر همراه با دسته بندی طبقه بندی شده در شناخت شیمیایی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Mention recognition in chemical texts plays an important role in a wide-spread range of application areas. Feature selection and parameter optimization are the two important issues in machine learning. While the former improves the quality of a classifier by removing the redundant and irrelevant features, the later concerns finding the most suitable parameter values, which have significant impact on the overall classification performance. In this paper we formulate a joint model that performs feature selection and parameter optimization simultaneously, and propose two approaches based on the concepts of single and multiobjective optimization techniques. Classifier ensemble techniques are also employed to improve the performance further. We identify and implement variety of features that are mostly domain-independent. Experiments are performed with various configurations on the benchmark patent and Medline datasets. Evaluation shows encouraging performance in all the settings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 85, September 2015, Pages 37–51
نویسندگان
, ,