کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
402310 676897 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multiple kernel dimensionality reduction via spectral regression and trace ratio maximization
ترجمه فارسی عنوان
کاهش اندازه چند هسته از طریق رگرسیون طیفی و به حداکثر رساندن نسبت
کلمات کلیدی
کاهش ابعاد، یادگیری چند هسته ای، ردیابی نسبت به حداکثر سازی، رگرسیون طیفی، تعبیه گراف
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

The performance of kernel-based dimensionality reduction heavily relies on the selection of kernel functions. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a convex combination from a set of base kernels. But this method relaxes a nonconvex quadratically constrained quadratic programming (QCQP) problem into a semi-definite programming (SDP) problem to specify the kernel weights, which might lead to its performance degradation. Although a trace ratio maximization approach to multiple-kernel based dimensionality reduction (MKL-TR) has been presented to avoid convex relaxation, it has to compute a generalized eigenvalue problem in each iteration of its algorithm, which is expensive in both time and memory. To improve the performance of these methods further, this paper proposes a novel multiple kernel dimensionality reduction method by virtue of spectral regression and trace ratio maximization, termed as MKL-SRTR. The proposed approach aims at learning an appropriate kernel from the multiple base kernels and a transformation into a lower dimensionality space efficiently and effectively. The experimental results demonstrate the effectiveness of the proposed method in benchmark datasets for supervised, unsupervised as well as semi-supervised scenarios.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 83, July 2015, Pages 159–169
نویسندگان
, , ,