کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
402636 676971 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Differential Evolution for learning the classification method PROAFTN
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Differential Evolution for learning the classification method PROAFTN
چکیده انگلیسی

This paper introduces a new learning technique for the multicriteria classification method PROAFTN. This new technique, called DEPRO, utilizes a Differential Evolution (DE) algorithm for learning and optimizing the output of the classification method PROAFTN. The limitation of the PROAFTN method is largely due to the set of parameters (e.g., intervals and weights) required to be obtained to perform the classification procedure. Therefore, a learning method is needed to induce and extract these parameters from data. DE is an efficient metaheuristic optimization algorithm based on a simple mathematical structure to mimic a complex process of evolution. Some of the advantages of DE over other global optimization methods are that it often converges faster and with more certainty than many other methods and it uses fewer control parameters. In this work, the DE algorithm is proposed to inductively obtain PROAFTN’s parameters from data to achieve a high classification accuracy. Based on results generated from 12 public datasets, DEPRO provides excellent results, outperforming the most common classification algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 23, Issue 5, July 2010, Pages 418–426
نویسندگان
, , , ,