کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
402764 677000 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Graph regularized sparse coding for 3D shape clustering
ترجمه فارسی عنوان
گراف برنامه نویسی ضعیف برای خوشه بندی سه بعدی شکل گرفت
کلمات کلیدی
خوشه بندی لاپلاس بلترامی، فاصله بی هارمونیک، برنامه نویسی متناقض
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Feature descriptors have become an increasingly important tool in shape analysis. Features can be extracted and subsequently used to design robust signatures for shape retrieval, correspondence, classification and clustering. In this paper, we present a graph-theoretic framework for 3D shape clustering using the biharmonic distance map and graph regularized sparse coding. While this work focuses primarily on clustering, our approach is fairly general and can be used to tackle other 3D shape analysis problems. In order to seamlessly capture the similarity between feature descriptors, we perform shape clustering on mid-level features that are generated via graph regularized sparse coding. Extensive experiments are carried out on three standard 3D shape benchmarks to demonstrate the much better performance of the proposed clustering approach in comparison with recent state-of-the-art methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 92, 15 January 2016, Pages 92–103
نویسندگان
,