کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
403531 677260 2015 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Automatic image annotation via compact graph based semi-supervised learning
ترجمه فارسی عنوان
حاشیه نویسی تصویر اتوماتیک از طریق گرافیک جمع و جور مبتنی بر نیمه نظارت بر یادگیری
کلمات کلیدی
یادگیری نیمه نظارت مبتنی بر گراف حاشیه نویسی تصویر، ساخت گراف جامد، یادگیری انتقالی و القایی، پخش برچسب
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

The insufficiency of labeled samples is major problem in automatic image annotation. However, unlabeled samples are readily available and abundant. Hence, semi-supervised learning methods, which utilize partly labeled samples and a large amount of unlabeled samples, have attracted increased attention in the field of image annotation. During the past decade, graph-based semi-supervised learning has been becoming one of the most important research areas in semi-supervised learning. In this paper, we propose a novel and effective graph based semi-supervised learning method for image annotation. The new method is derived by a compact graph that can well grasp the manifold structure. In addition, we theoretically prove that the proposed semi-supervised learning method can be analyzed under a regularized framework. It can also be easily extended to deal with out-of-sample data. Simulation results show that the proposed method can achieve better performance compared with other state-of-the-art graph based semi-supervised learning methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 76, March 2015, Pages 148–165
نویسندگان
, , , ,