کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
403612 677280 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel hybrid intelligent approach for contractor default status prediction
ترجمه فارسی عنوان
روشی هوش هیجانی جدید برای پیش بینی وضعیت پیش فرض پیمانکار
کلمات کلیدی
هوش هیبرید، پیش بینی پیش فرض مالی، کمترین مربعات پشتیبانی ماشین بردار، تکامل دیفرانسیل، طبقه بندی نامتعادل
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• A novel contractor default prediction model is proposed.
• The model is developed based on the SMOTE, LS-SVM, and DE algorithms.
• Historical cases were collected to construct and verify the model.
• Experimental results show that the model can deliver superior performance.

In the construction industry, evaluating the financial status of a contractor is a challenging task due to the myriad of the input data as well as the complexity of the working environment. This article presents a novel hybrid intelligent approach named as Evolutionary Least Squares Support Vector Machine Inference Model for Predicting Contractor Default Status (ELSIM-PCDS). The proposed ELSIM-PCDS is established by hybridizing the Synthetic Minority Over-sampling Technique (SMOTE), Least Squares Support Vector Machine (LS-SVM), and Differential Evolution (DE) algorithms. In this new paradigm, the SMOTE is specifically used to deal with the imbalanced classification problem. The LS-SVM acts as a supervised learning technique for learning the classification boundary that separates the default and non-default contractors. Additionally, the DE algorithm automatically searches for the optimal parameters of the classification model. Experimental results have demonstrated that the classification performance of the ELSIM-PCDS is better than that of other benchmark methods. Therefore, the proposed hybrid approach is a promising alternative for predicting contractor default status.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 71, November 2014, Pages 314–321
نویسندگان
, , , ,