کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
403781 677350 2016 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Meta-cognitive online sequential extreme learning machine for imbalanced and concept-drifting data classification
ترجمه فارسی عنوان
دستگاه یادگیری شدید فراشناخت آنلاین متوالی برای طبقه بندی داده ها نامتوازن و مفهوم خوش پیشامد
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In this paper, a meta-cognitive online sequential extreme learning machine (MOS-ELM) is proposed for class imbalance and concept drift learning. In MOS-ELM, meta-cognition is used to self-regulate the learning by selecting suitable learning strategies for class imbalance and concept drift problems. MOS-ELM is the first sequential learning method to alleviate the imbalance problem for both binary class and multi-class data streams with concept drift. In MOS-ELM, a new adaptive window approach is proposed for concept drift learning. A single output update equation is also proposed which unifies various application specific OS-ELM methods. The performance of MOS-ELM is evaluated under different conditions and compared with methods each specific to some of the conditions. On most of the datasets in comparison, MOS-ELM outperforms the competing methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 80, August 2016, Pages 79–94
نویسندگان
, ,