کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
403906 677367 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Estimates on compressed neural networks regression
ترجمه فارسی عنوان
برآورد رگرسیون شبکه عصبی فشرده
کلمات کلیدی
یادگیری رگرسیون، شبکه های عصبی، طرح ریزی فشرده
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

When the neural element number nn of neural networks is larger than the sample size mm, the overfitting problem arises since there are more parameters than actual data (more variable than constraints). In order to overcome the overfitting problem, we propose to reduce the number of neural elements by using compressed projection AA which does not need to satisfy the condition of Restricted Isometric Property (RIP). By applying probability inequalities and approximation properties of the feedforward neural networks (FNNs), we prove that solving the FNNs regression learning algorithm in the compressed domain instead of the original domain reduces the sample error at the price of an increased (but controlled) approximation error, where the covering number theory is used to estimate the excess error, and an upper bound of the excess error is given.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 63, March 2015, Pages 10–17
نویسندگان
, , , ,