کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
403912 677367 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Convergence and attractivity of memristor-based cellular neural networks with time delays
ترجمه فارسی عنوان
همگرایی و جذابیت شبکه های عصبی سلولی مبتنی بر ماریستر با تاخیر زمانی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

This paper presents theoretical results on the convergence and attractivity of memristor-based cellular neural networks (MCNNs) with time delays. Based on a realistic memristor model, an MCNN is modeled using a differential inclusion. The essential boundedness of its global solutions is proven. The state of MCNNs is further proven to be convergent to a critical-point set located in saturated region of the activation function, when the initial state locates in a saturated region. It is shown that the state convergence time period is finite and can be quantitatively estimated using given parameters. Furthermore, the positive invariance and attractivity of state in non-saturated regions are also proven. The simulation results of several numerical examples are provided to substantiate the results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 63, March 2015, Pages 223–233
نویسندگان
, , ,