کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
403938 | 677372 | 2014 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we consider the problem of feature selection for linear SVMs on uncertain data that is inherently prevalent in almost all datasets. Using principles of Robust Optimization, we propose robust schemes to handle data with ellipsoidal model and box model of uncertainty. The difficulty in treating ℓ0ℓ0-norm in feature selection problem is overcome by using appropriate approximations and Difference of Convex functions (DC) programming and DC Algorithms (DCA). The computational results show that the proposed robust optimization approaches are superior than a traditional approach in immunizing perturbation of the data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 59, November 2014, Pages 36–50
Journal: Neural Networks - Volume 59, November 2014, Pages 36–50
نویسندگان
Hoai An Le Thi, Xuan Thanh Vo, Tao Pham Dinh,