کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404005 677380 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lagrangian support vector regression via unconstrained convex minimization
ترجمه فارسی عنوان
رگرسیون بردار پشتیبانی لاگرانژی از طریق کمینه کردن محدب بدون محدودیت
کلمات کلیدی
رویکرد مشتق کلیه، تقریبی صاف، رگرسیون بردار پشتیبانی، به حداقل رساندن محدب بدون محدودیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In this paper, a simple reformulation of the Lagrangian dual of the 2-norm support vector regression (SVR) is proposed as an unconstrained minimization problem. This formulation has the advantage that its objective function is strongly convex and further having only mm variables, where mm is the number of input data points. The proposed unconstrained Lagrangian SVR (ULSVR) is solvable by computing the zeros of its gradient. However, since its objective function contains the non-smooth ‘plus’ function, two approaches are followed to solve the proposed optimization problem: (i) by introducing a smooth approximation, generate a slightly modified unconstrained minimization problem and solve it; (ii) solve the problem directly by applying generalized derivative. Computational results obtained on a number of synthetic and real-world benchmark datasets showing similar generalization performance with much faster learning speed in accordance with the conventional SVR and training time very close to least squares SVR clearly indicate the superiority of ULSVR solved by smooth and generalized derivative approaches.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 51, March 2014, Pages 67–79
نویسندگان
, , ,