کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404102 677388 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Diversifying customer review rankings
ترجمه فارسی عنوان
تنوع رتبه بندی مشتریان بررسی
کلمات کلیدی
رتبه بندی مدلهای موضوعی، خلاصه سازی، تنوع پیشنهاد بازبینی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

E-commerce Web sites owe much of their popularity to consumer reviews accompanying product descriptions. On-line customers spend hours and hours going through heaps of textual reviews to decide which products to buy. At the same time, each popular product has thousands of user-generated reviews, making it impossible for a buyer to read everything. Current approaches to display reviews to users or recommend an individual review for a product are based on the recency or helpfulness of each review.In this paper, we present a framework to rank product reviews by optimizing the coverage of the ranking with respect to sentiment or aspects, or by summarizing all reviews with the top-K reviews in the ranking. To accomplish this, we make use of the assigned star rating for a product as an indicator for a review’s sentiment polarity and compare bag-of-words (language model) with topic models (latent Dirichlet allocation) as a mean to represent aspects. Our evaluation on manually annotated review data from a commercial review Web site demonstrates the effectiveness of our approach, outperforming plain recency ranking by 30% and obtaining best results by combining language and topic model representations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 66, June 2015, Pages 36–45
نویسندگان
, ,