کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
404124 | 677391 | 2013 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An improved analysis of the Rademacher data-dependent bound using its self bounding property
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The problem of assessing the performance of a classifier, in the finite-sample setting, has been addressed by Vapnik in his seminal work by using data-independent measures of complexity. Recently, several authors have addressed the same problem by proposing data-dependent measures, which tighten previous results by taking in account the actual data distribution. In this framework, we derive some data-dependent bounds on the generalization ability of a classifier by exploiting the Rademacher Complexity and recent concentration results: in addition of being appealing for practical purposes, as they exploit empirical quantities only, these bounds improve previously known results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 44, August 2013, Pages 107–111
Journal: Neural Networks - Volume 44, August 2013, Pages 107–111
نویسندگان
Luca Oneto, Alessandro Ghio, Davide Anguita, Sandro Ridella,