کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
404383 | 677419 | 2011 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Methods for directly estimating the ratio of two probability density functions have been actively explored recently since they can be used for various data processing tasks such as non-stationarity adaptation, outlier detection, and feature selection. In this paper, we develop a new method which incorporates dimensionality reduction into a direct density-ratio estimation procedure. Our key idea is to find a low-dimensional subspace in which densities are significantly different and perform density-ratio estimation only in this subspace. The proposed method, D3-LHSS (Direct Density-ratio estimation with Dimensionality reduction via Least-squares Hetero-distributional Subspace Search), is shown to overcome the limitation of baseline methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 24, Issue 2, March 2011, Pages 183–198
Journal: Neural Networks - Volume 24, Issue 2, March 2011, Pages 183–198
نویسندگان
Masashi Sugiyama, Makoto Yamada, Paul von Bünau, Taiji Suzuki, Takafumi Kanamori, Motoaki Kawanabe,