کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404402 677421 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient global maximum likelihood estimation through kernel methods
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Efficient global maximum likelihood estimation through kernel methods
چکیده انگلیسی

A new efficient technique for estimating probability densities from data through the application of the approximate global maximum likelihood (AGML) approach is proposed. It employs a composition of kernel functions to estimate the correct behavior of parameters involved in the expression of the unknown probability density. Convergence to the optimal solution is guaranteed by a deterministic learning framework when low discrepancy sequences are used to generate the centers of the kernels. Trials on mixture of Gaussians show that the proposed semi-local technique is able to efficiently approximate the maximum likelihood solution even in complex situations where implementations based on standard neural networks require an excessive computational cost.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 23, Issue 7, September 2010, Pages 917–925
نویسندگان
, , ,