کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
404514 | 677431 | 2008 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Robust support vector regression in the primal
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The classical support vector regressions (SVRs) are constructed based on convex loss functions. Since non-convex loss functions to a certain extent own superiority to convex ones in generalization performance and robustness, we propose a non-convex loss function for SVR, and then the concave-convex procedure is utilized to transform the non-convex optimization to convex one. In the following, a Newton-type optimization algorithm is developed to solve the proposed robust SVR in the primal, which can not only retain the sparseness of SVR but also oppress outliers in the training examples. The effectiveness, namely better generalization, is validated through experiments on synthetic and real-world benchmark data sets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 21, Issue 10, December 2008, Pages 1548–1555
Journal: Neural Networks - Volume 21, Issue 10, December 2008, Pages 1548–1555
نویسندگان
Yongping Zhao, Jianguo Sun,