کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404577 677438 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Near-synonym substitution using a discriminative vector space model
ترجمه فارسی عنوان
جایگزینی نزدیک به مترادف با استفاده از مدل فضای برداری افتراقی
کلمات کلیدی
پردازش زبان طبیعی؛ جایگزینی واژگانی؛ نزدیک مترادف یادگیری؛ آموزش افتراقی؛ مدل فضای برداری
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Near-synonyms are fundamental and useful knowledge resources for computer-assisted language learning (CALL) applications. For example, in online language learning systems, learners may have a need to express a similar meaning using different words. However, it is usually difficult to choose suitable near-synonyms to fit a given context because the differences of near-synonyms are not easily grasped in practical use, especially for second language (L2) learners. Accordingly, it is worth developing algorithms to verify whether near-synonyms match given contexts. Such algorithms could be used in applications to assist L2 learners in discovering the collocational differences between near-synonyms. We propose a discriminative vector space model for the near-synonym substitution task, and consider this task as a classification task. There are two components: a vector space model and discriminative training. The vector space model is used as a baseline classifier to classify test examples into one of the near-synonyms in a given near-synonym set. A discriminative training technique is then employed to improve the vector space model by distinguishing positive and negative features for each near-synonym. Experimental results show that the DT-VSM achieves higher accuracy than both pointwise mutual information and n-gram-based methods that have been used in previous studies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 106, 15 August 2016, Pages 74–84
نویسندگان
, , , , ,