کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404586 677438 2016 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evidential clustering of large dissimilarity data
ترجمه فارسی عنوان
خوشه بندی شواهد داده های با تفاوت بزرگ
کلمات کلیدی
نظریه دمستر شافر؛ نظریه شواهد؛ توابع اعتقاد، آموزش بدون نظارت؛ پارتیشن Credal؛ داده های رابطه ای؛ داده در مجاورت. داده های دو به دو
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In evidential clustering, the membership of objects to clusters is considered to be uncertain and is represented by Dempster-Shafer mass functions, forming a credal partition. The EVCLUS algorithm constructs a credal partition in such a way that larger dissimilarities between objects correspond to higher degrees of conflict between the associated mass functions. In this paper, we present several improvements to EVCLUS, making it applicable to very large dissimilarity data. First, the gradient-based optimization procedure in the original EVCLUS algorithm is replaced by a much faster iterative row-wise quadratic programming method. Secondly, we show that EVCLUS can be provided with only a random sample of the dissimilarities, reducing the time and space complexity from quadratic to roughly linear. Finally, we introduce a two-step approach to construct credal partitions assigning masses to selected pairs of clusters, making the algorithm outputs more informative than those of the original EVCLUS, while remaining manageable for large numbers of clusters.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 106, 15 August 2016, Pages 179–195
نویسندگان
, , ,