کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
404767 | 677448 | 2007 | 10 صفحه PDF | دانلود رایگان |

The dominant set of eigenvectors of the symmetrical kernel Gram matrix is used in many important kernel methods (like e.g. kernel Principal Component Analysis, feature approximation, denoising, compression, prediction) in the machine learning area. Yet in the case of dynamic and/or large-scale data, the batch calculation nature and computational demands of the eigenvector decomposition limit these methods in numerous applications. In this paper we present an efficient incremental approach for fast calculation of the dominant kernel eigenbasis, which allows us to track the kernel eigenspace dynamically. Experiments show that our updating scheme delivers a numerically stable and accurate approximation for eigenvalues and eigenvectors at every iteration in comparison to the batch algorithm.
Journal: Neural Networks - Volume 20, Issue 2, March 2007, Pages 220–229