کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404798 677452 2007 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Convergence analysis of a simple minor component analysis algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Convergence analysis of a simple minor component analysis algorithm
چکیده انگلیسی

Minor component analysis (MCA) is a powerful statistical tool for signal processing and data analysis. Convergence of MCA learning algorithms is an important issue in practical applications. In this paper, we will propose a simple MCA learning algorithm to extract minor component from input signals. Dynamics of the proposed MCA learning algorithm are analysed using a corresponding deterministic discrete time (DDT) system. It is proved that almost all trajectories of the DDT system will converge to minor component if the learning rate satisfies some mild conditions and the trajectories start from points in an invariant set. Simulation results will be furnished to illustrate the theoretical results achieved.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 20, Issue 7, September 2007, Pages 842–850
نویسندگان
, , ,