کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404840 677457 2007 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Machine learning approach to color constancy
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Machine learning approach to color constancy
چکیده انگلیسی

A number of machine learning (ML) techniques have recently been proposed to solve color constancy problem in computer vision. Neural networks (NNs) and support vector regression (SVR) in particular, have been shown to outperform many traditional color constancy algorithms. However, neither neural networks nor SVR were compared to simpler regression tools in those studies. In this article, we present results obtained with a linear technique known as ridge regression (RR) and show that it performs better than NNs, SVR, and gray world (GW) algorithm on the same dataset. We also perform uncertainty analysis for NNs, SVR, and RR using bootstrapping and show that ridge regression and SVR are more consistent than neural networks. The shorter training time and single parameter optimization of the proposed approach provides a potential scope for real time video tracking application.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 20, Issue 5, July 2007, Pages 559–563
نویسندگان
, , ,