کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404972 677469 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Identification of uncertain nonlinear systems: Constructing belief rule-based models
ترجمه فارسی عنوان
شناسایی سیستم های نامشخص غیر خطی: ساخت مدل های باور مبتنی بر اعتقادات
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

The objective of this paper is to construct reliable belief rule-based (BRB) models for the identification of uncertain nonlinear systems. The BRB methodology is developed from the evidential reasoning (ER) approach and traditional IF–THEN rule based system. It can be used to model complicated nonlinear causal relationships between antecedent attributes and consequents under different types of uncertainty. In a BRB model, various types of information and knowledge with uncertainties can be represented using belief structures, and a belief rule is designed with belief degrees embedded in its possible consequents. In this paper, we first introduce the BRB methodology for modelling uncertain nonlinear systems. Then we present a comparative analysis of three BRB identification models through combining the BRB methodology with nonlinear optimisation techniques. The novel BRB identification models using l∞-norm and minimising mean uncertainties in belief rules (MUBR) show remarkable capabilities of capturing the lower and upper bounds of the interval outputs of uncertain nonlinear systems simultaneously. Trade-off analysis between identification accuracy and interval credibility are briefly discussed. Finally, a numerical study of a simplified car dynamics is conducted to demonstrate the capability and effectiveness of the BRB identification models for the modelling and identification of uncertain nonlinear systems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 73, January 2015, Pages 124–133
نویسندگان
, , , , ,