کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404999 677471 2006 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive filtering with the self-organizing map: A performance comparison
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Adaptive filtering with the self-organizing map: A performance comparison
چکیده انگلیسی

In this paper we provide an in-depth evaluation of the SOM as a feasible tool for nonlinear adaptive filtering. A comprehensive survey of existing SOM-based and related architectures for learning input–output mappings is carried out and the application of these architectures to nonlinear adaptive filtering is formulated. Then, we introduce two simple procedures for building RBF-based nonlinear filters using the Vector-Quantized Temporal Associative Memory (VQTAM), a recently proposed method for learning dynamical input–output mappings using the SOM. The aforementioned SOM-based adaptive filters are compared with standard FIR/LMS and FIR/LMS–Newton linear transversal filters, as well as with powerful MLP-based filters in nonlinear channel equalization and inverse modeling tasks. The obtained results in both tasks indicate that SOM-based filters can consistently outperform powerful MLP-based ones.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 19, Issues 6–7, July–August 2006, Pages 785–798
نویسندگان
, ,