کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
405281 677519 2011 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A partial correlation-based Bayesian network structure learning algorithm under linear SEM
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A partial correlation-based Bayesian network structure learning algorithm under linear SEM
چکیده انگلیسی

A new algorithm, the PCB (partial correlation-based) algorithm, is presented for Bayesian network structure learning. The algorithm effectively combines ideas from local learning with partial correlation techniques. It reconstructs the skeleton of a Bayesian network based on partial correlation and then performs a greedy hill-climbing search to orient the edges. Specifically, we make three contributions. First, we prove that in a linear SEM (simultaneous equation model) with uncorrelated errors, when the datasets are generated by linear SEM, subject to arbitrary distribution disturbances, we can use partial correlation as the criterion of the CI test. Second, we perform a series of experiments to find the best threshold value of the partial correlation. Finally, we show how partial correlation can be used in Bayesian network structure learning under linear SEM. The effectiveness of the method is compared with current state of the art methods on eight networks. A simulation shows that the PCB algorithm outperforms existing algorithms in both accuracy and run time.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 24, Issue 7, October 2011, Pages 963–976
نویسندگان
, , ,