کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
40535 45857 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Oxidative dehydrogenation of ethylbenzene over La0.8Ba0.2Fe0.4Mn0.6O3−δ perovskite oxide catalyst
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Oxidative dehydrogenation of ethylbenzene over La0.8Ba0.2Fe0.4Mn0.6O3−δ perovskite oxide catalyst
چکیده انگلیسی


• Oxidative dehydrogenation of ethylbenzene over La0.8Ba0.2Fe0.4Mn0.6O3−δ perovskite was investigated.
• High styrene production activity over LBFMO oxide with steam and gaseous oxygen.
• Steam and oxygen work together as oxidants for lattice oxygen vacancy.
• Styrene production rate depends on the amount of lattice oxygen in LBFMO.

La0.8Ba0.2Fe0.4Mn0.6O3−δ (LBFMO) perovskite oxide has been found to be an active catalyst for oxidative dehydrogenation of ethylbenzene working with a characteristic Mars–van Krevelen redox mechanism in which steam functions as an oxidant. Results of this study showed that LBFMO oxide exhibited higher activity in the presence of both steam and gaseous oxygen compared with that of steam redox system. The reaction rate of oxidative dehydrogenation of ethylbenzene was zero-th order in oxygen partial pressure and 1.3 order in the amount of the surface lattice oxygen, which demonstrates that the reaction proceeded with redox system and the activity was determined mainly by the available amount of surface lattice oxygen. Kinetics of regeneration of the lattice oxygen from both steam and gaseous oxygen were also investigated, which confirmed that steam and gaseous oxygen mutually function as the oxidant for lattice vacancy on LBFMO. Results of thermogravimetric analysis showed that the available amount of the lattice oxygen in the presence of both steam and gaseous oxygen was 115 mmol mol-cat−1, almost twice as high as that in steam alone (63 mmol mol-cat−1). High activity in the presence of both steam and oxygen is attributable to the fact that these can simultaneously perform as the oxidant leading to a rich amount of the surface lattice oxygen of LBFMO oxide during the reaction.

Figure optionsDownload high-quality image (69 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Catalysis A: General - Volume 456, 10 April 2013, Pages 197–203
نویسندگان
, , , , ,