کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
405371 | 677551 | 2008 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Classification of multivariate time series using two-dimensional singular value decomposition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Multivariate time series (MTS) are used in very broad areas such as multimedia, medicine, finance and speech recognition. A new approach for MTS classification using two-dimensional singular value decomposition (2dSVD) is proposed. 2dSVD is an extension of standard SVD, it captures explicitly the two-dimensional nature of MTS samples. The eigenvectors of row–row and column–column covariance matrices of MTS samples are computed for feature extraction. After the feature matrix is obtained for each MTS sample, one-nearest-neighbor classifier is used for MTS classification. Experimental results performed on five real-world datasets demonstrate the effectiveness of our proposed approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 21, Issue 7, October 2008, Pages 535–539
Journal: Knowledge-Based Systems - Volume 21, Issue 7, October 2008, Pages 535–539
نویسندگان
Xiaoqing Weng, Junyi Shen,